HPLC-DAD 双波长法同时测定
脑络欣通胶囊中阿魏酸及天麻素含量

程 刚1, 2，胡容峰1, 2, 3, 4，王 斌2，丁领振1，方文彪1, 2

(1. 安徽中医药大学研究生部，安徽 合肥 230038; 2. 新安医学教育部重点实验室，安徽 合肥 230038; 3. 安徽省“115”新安医学研究与开发创新团队，安徽 合肥 230038; 4. 安徽省中药研究与开发重点实验室，安徽 合肥 230038)

【摘要】目的 建立双波长同时测定脑络欣通胶囊中天麻素和阿魏酸含量的方法，为脑络欣通的质量控制提供依据。方法 采用高效液相色谱-二极管阵列检测器和 Welch Materials C18 色谱柱（250 mm×4.6 mm，5 μm），流动相：乙腈-0.1%磷酸溶液，梯度洗脱（乙腈：0～10 min，6%；10～30 min，6%～35%）；流速：1.0 mL/min；柱温：35 ℃；检测波长：320 nm（阿魏酸）和 222 nm（天麻素）。结果 在 30 min 内，实现了阿魏酸与天麻素双波长同时测定，二者含量分别为 0.20～2.39 μg（r=0.999 9）和 0.20～2.41 μg（r=0.999 9）范围内与峰面积呈良好的线性关系，平均回收率分别为 99.5% 和 99.1%（n=6）。结论 双波长检测对复方中阿魏酸与天麻素含量测定更准确，二者同时测定能有效提高分析效率，该方法可用于脑络欣通胶囊的质量控制。

【关键词】高效液相色谱-二极管阵列检测器；双波长；脑络欣通；阿魏酸；天麻素

【中图分类号】R927.2 【DOI】10.3969/j.issn.2095-7246.2015.06.026

川芎和天麻作为常用药对[1]，存在于许多中西药复方，如大芎丸（《圣济总录》卷十五），天麻丸和九味羌活丸（《中华人民共和国药典·一部》），两者同时作为天舒胶囊（《中华人民共和国药典·一部》）脑络欣通胶囊等中药制剂有效成分，临床使用广泛的理论基础。阿魏酸和天麻素分别为中药川芎和天麻中的活性成分，已有的含量测定方法[2-4]存在流动相体系酸度较高，色谱峰保留时间长，单一检测波长下天麻素的色谱峰响应值低等问题，因此，有必要建立较为有效的含量分析方法。脑络欣通是新安医学家王庆的治疗缺血性脑血管疾病的临床验方，由天麻、当归和川芎等药物组成，具有活血通络、熄风养血的功效[5-8]，为新安医学益气活血代表方剂。本实验在课题组前期研究[9]的基础上，选择高液相色谱-二极管阵列检测器(high performance liquid chromatography-diode array detector，HPLC-DAD)双波长同时检测，建立阿魏酸和天麻素含量测定方法，为进一步完善脑络欣通质量控制方法提供实验依据。

【基金项目】：国家科技支撑计划（2012BAI26B03）；国家自然科学基金资助项目（81274100）；安徽省学术和技术带头人及后备人选科研活动经费资助项目（皖人社秘[2011-38号-26]

作者简介：程刚（1991-），男，硕士研究生
通信作者：胡容峰，hurongfeng@163.com

1 材料与仪器
1.1 试药 天麻素（批号 110807-200205，纯度 95.4%）、阿魏酸（批号 110773-201012，纯度 99.6%）；均由国家食品药品检定研究院提供；三七、黄芪、川芎、当归、天麻、红花、蜈蚣等药材；均购自安徽省合肥乐家老药中药饮片厂，经安徽省中药研究与开发中心药学院生药系俞干教授鉴定符合 2010 版《中华人民共和国药典》相关项目的要求；脑络欣通胶囊（每粒 0.38 g，批号分别为 140701、140801、140804）及阴性样品均自制：乙腈（瑞典 Oceanpak）为色谱纯，水为超纯水。其他试剂均为分析纯。

1.2 主要仪器 硅胶 G 薄层板：山东省青岛市基亿达硅胶试剂厂；Agilent 1100 型 HPLC 仪；美国赛多利斯科学有限公司；Satorius BP211D 型十万分之一电子天平；德国赛多利斯有限公司；HS1026D 型超声波清洗机；天津奥特赛恩斯仪器有限公司。

2 方法
2.1 对照品贮备液的制备 将阿魏酸和天麻素置干五氧化二磷干燥器中干燥 12 h，精密称定阿魏酸对照品 3.98 mg 和天麻素对照品 4.02 mg，分别置于 10 mL 玻璃容量瓶中，甲醇定容至刻度，4 ℃冰箱中保存备用。

2.2 混合对照品溶液的制备 精密移取 1 mL 天麻素和阿魏酸对照品贮备液，置于 10 mL 棕色容量瓶中，甲醇稀释溶解，定容至刻度，摇匀，制成含阿魏酸 39.8 μg/mL 和天麻素 40.2 μg/mL 的混合对照品溶液。

2.3 供试品溶液的制备 取胶囊内容物约 0.5 g，
精密称定，置 10 mL 容量瓶中，精密加人体积分数
70％甲醇 10 mL，称定质量，超声 (功率 500 W，频率
40 kHz) 处理 20 min，放冷，再称定质量，用 70％甲
醇补足减失的质量，摇匀。将上述滤液过滤。取
续滤液，过 0.45 μm 微孔滤膜，即得供试样品溶液。
2.4 阴性对照品溶液的制备 按处方配比，称取除
川芎、当归以外和除天麻以外的其他药材，按制备工
艺制成胶囊，再取胶囊内容物按“2.3”项下方法制得
阴性对照品溶液。
2.5 色谱条件 Welch Materials C5 色谱柱 (250
mm×4.6 mm，5 μm)，流动相为乙腈-0.01％磷酸溶
液，梯度洗脱程序 (0～10 min，乙腈 6％; 10～30
min，乙腈 6％→35％)，流速 1.0 mL/min，柱温
35 °C，DAD 检测器，检测波长分别为 320 nm (阿
魏酸) 和 222 nm (天麻素)。
2.6 系统适用性实验 按“2.5”项下色谱条件，分
别吸取对照品溶液、供试品溶液、阴性对照品溶液
5 μL，进行分析，结果表明，脑络欣通中阿魏酸与天
麻素有效成分均能与其他组分达到基线分离，且阴
性对照品溶液无扰。色谱图见图 1 和图 2。

图 1 混合对照品 (A)、脑络欣通胶囊样品 (B) 和缺天麻的阴性对照品 (C) 在 222 nm 处的色谱图 (注:1 为天麻素)

图 2 混合对照品 (A)、脑络欣通胶囊样品 (B) 和缺当归、川芎的阴性对照品 (C) 在 320 nm 处的色谱图 (注:1 为阿魏酸)

2.7 线性关系的考察 分别精密吸取混合对照品
溶液 5,10,20,30,40,60 μL 注入高效液相色谱仪，
测定峰面积，以峰面积 y 为纵坐标，浓度 x 为横坐
标进行线性回归，得阿魏酸和天麻素的回归方程及
相关系数。阿魏酸的回归方程为 y = 2 957.8x +
1.485 (r = 0.999 9)，线性范围为 0.20～2.39 μg;
天麻素的回归方程为 y = 2 019.4x - 45.446 (r =
0.999 8)，线性范围为 0.201～2.41 μg。
2.8 精密度实验 精密吸取混合对照品溶液
5 μL 注入液相色谱仪，连续测定 6 次，计算阿魏酸
与天麻素峰面积的 RSD 分别为 0.14％、0.22％。
结果表明，仪器精密度良好，符合定量分析要求。
2.9 稳定性实验 精密吸取供试品溶液 5 μL，分
别在制备后 0.2,4,8,12,24 h 进样，计算阿魏酸与
天麻素峰面积的 RSD 分别为 0.48％、0.46％。
结果表明，供试品溶液在 24 h 内稳定。
2.10 重复性实验 称取同一批号样品 (批号
140701)6 份，按“2.3”项下方法制备供试品溶液，按
“2.5”项下色谱条件进行分析，测得阿魏酸与天麻素
的峰面积，并计算阿魏酸与天麻素含量。结果显示，
阿魏酸和天麻素含量的 RSD 分别为 1.26％、1.75％，
表明该方法重复性良好。
2.11 加样回收率试验 精密称取已知含量的样品
(批号 140701)6 份，每份约 0.1 g，分别加入混合对
照品贮备溶液 (含阿魏酸 0.37 mg/mL，天麻素 0.56
mg/mL) 1.0 mL，按“2.3”项下方法制备供试品，分
别吸取 5 μL 进样，记录峰面积。根据加入量和测得
量，计算加样回收率。见表 1。

<table>
<thead>
<tr>
<th>成分</th>
<th>制剂量/</th>
<th>含量/</th>
<th>加入量/</th>
<th>测得量/</th>
<th>回收率/%</th>
<th>平均回收率/</th>
<th>RSD/ %</th>
</tr>
</thead>
<tbody>
<tr>
<td>阿魏酸</td>
<td>0.100 6</td>
<td>0.374 6</td>
<td>0.743 9</td>
<td>99.8</td>
<td>0.099 5</td>
<td>0.370 6</td>
<td>0.738 9</td>
</tr>
<tr>
<td></td>
<td>0.098 9</td>
<td>0.368 5</td>
<td>0.737 3</td>
<td>98.7</td>
<td>0.100 1</td>
<td>0.372 9</td>
<td>0.743 1</td>
</tr>
<tr>
<td></td>
<td>0.099 2</td>
<td>0.369 6</td>
<td>0.737 4</td>
<td>99.4</td>
<td>0.101 1</td>
<td>0.376 6</td>
<td>0.745 5</td>
</tr>
<tr>
<td>天麻素</td>
<td>0.100 6</td>
<td>0.561 0</td>
<td>1.117 1</td>
<td>99.3</td>
<td>0.099 5</td>
<td>0.555 0</td>
<td>1.108 8</td>
</tr>
<tr>
<td></td>
<td>0.098 9</td>
<td>0.551 7</td>
<td>1.103 3</td>
<td>98.5</td>
<td>0.100 9</td>
<td>0.553 8</td>
<td>1.115 5</td>
</tr>
<tr>
<td></td>
<td>0.101 1</td>
<td>0.563 6</td>
<td>1.120 2</td>
<td>99.4</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2.12 含量测定 取批号分别为 140701、140801、
140802 的胶囊样品，精密称定，按“2.3”项下方法制
备供试品溶液，按“2.5”项下色谱条件进行测定，测
得每粒胶囊中阿魏酸的含量分别为 1.42±1.43 mL，平均
含量为 1.42 mg，RSD 分别为 1.30％、1.06％和 0.28％; 每粒胶囊中天麻素的含
Simultaneous Determination of Ferulic Acid and Gastrod in Naoloxuontong Capsule by Dual-wavelength High-performance Liquid Chromatography-Diode Array Detector

CHENG Gang1,2, HU Rong-feng1,2,3,4, WANG Bin2, DING Ling-zhen1, FANG Wen-you1,2

1. Graduate Division of Anhui University of Chinese Medicine, Anhui Hefei 230038, China; 2. Key Laboratory of Xin’an Medicine, Ministry of Education, Anhui Hefei 230038, China; 3. Anhui “115” Xin’an Traditional Chinese Medicine Research & Development Innovation Team, Anhui Hefei 230038, China; 4. Anhui Province Key Laboratory of R&D of Chinese Medicine, Anhui Hefei 230038, China

[Abstract] Objective To establish a dual-wavelength method for simultaneous determination of the content of gastrodin and ferulic acid in Naoloxuontong Capsule, and to provide a basis for the quality control of Naoloxuontong Capsule.

Methods High-performance liquid chromatography-diode array detector and Welch Material C_8 column (250 mm × 4.6 mm, 5 μm) were applied. The conditions for detection were a mobile phase of acetonitrile and 0.01% phosphoric acid, gradient elution (acetonitrile: 0-10 min, 6%; 10-
循证学习模式在《伤寒论》方证案例教学中的应用

叶晓勤1,2,王利娜2

(1. 安徽中医药大学临床学院·安徽 合肥 230038；
2. 安徽中医药大学第二附属医院·安徽 合肥 230061)

[摘要]《伤寒论》作为中医经典著作，如何进行有效教学，从而提高教学质量，保证教育质量，促进中医人才的培养，是《伤寒论》教学过程中值得注意的课题。将循证学习模式应用于《伤寒论》教学，改革传统的教学方法，有利于激发学生学习的积极性、主动性和创造性，培养学生的批判性思维以及创新能力，提高学生自我更新知识和掌握临床技能的方法和技巧能力。

[关键词]《伤寒论》：自主学习；方证；方证案例教学；循证学习模式

近年来，我国高等教育理念发生了很大转变，要求把学生视为教育改革主要的和负责的参与者，提倡在教学过程中落实以学生为中心，加强学生自主学习能力的提高已成为高等学校教育的共识。教学过程中应给予学生足够的自主学习时间和空间，充分调动学生自主参与学习的积极性，设计适合学生学习的教学方式，让学生学会自主学习的方法，最大限度地发挥学生学习的积极性、主动性和创造性，提高学习效率。

1 从方证案例教学入手是学好《伤寒论》的捷径

方证是《伤寒论》的核心[1]，《伤寒论》载方112首，代表了112个方证，体现了中医理法药的一脉相承，并由此开了方（方证）辨证的先河。从方证入手是学习《伤寒论》的捷径[2]。从某个角度来看，《伤寒论》条文可以看作是多个治疗有效的医案。张仲景将复杂多变的病情进行分析归纳，根据其规律性，总结出112个方证，以条文成书。而这112个方证，因其组方严谨，疗效显著，自问世以来，一直被广泛应用于临床，这也为《伤寒论》方证案例教学提供了大量详实有效的案例。在教学过程中应当以方证为中心，适当引入案例分析等方法，重点介绍方证的临床应用，建立由证到方的辨证论治的思维模式，可以帮助学生理解并掌握方证相应关系。选择的案例要符合教学大纲的要求，具有典型性和启发性，有理论和实际意义，有机地将知识点、重点掌握的内容串联起来，目的是调动学生的学习主动性，培养综合分析、全面解决问题的能力。

2 《伤寒论》方证中蕴含循证医学思想

循证医学意为“遵循证据的医学”，其主要核心思想之一就是“遵循当前最佳证据”。《伤寒论》最佳证据的组合是通过“证→方”体现出来的，其中所载的112个方证就是张仲景在继承汉以前医学成就和